A FLUORESCENT TECHNIQUE FOR THE OBSERVATION OF POLYVINYLPYRROLIDONE BINDER DISTRIBUTION IN GRANULES

M.E. Aulton, M. Banks and I. ab I. Davies School of Pharmacy, Leicester Polytechnic, Leicester, U.K.

A technique is described involving the binding of fluorescein isothiocyanate (FITC) to polyvinylpyrrolidone This complex has been used as a binder during fluidised bed granulation. The resulting granules have been observed under light excitement and the distribution of PVP in the granules assessed.

The labelling of proteins with FITC involves an electrophilic attack by the FITC upon the ε -amino group of lysine². Since the nitrogen atom of the pyrrolidone rings of PVP is weakly basic, the FITC will form a link with this heterocyclic nitrogen atom and thus be bound, possibly as a complex, to the PVP. was confirmed by the distinct separation of the PVP-FITC complex from the free FITC by Sephadex Chromatography.

537

Copyright © 1979 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

METHOD

To bind the FITC to PVP, the method of Rinderknecht was adapted. 5 mg of FITC was dissolved in 100 ml of 0.05 M sodium carbonate/bicarbonate buffer (pH 8.5) and shaken for 15 minutes at room temperature with 100 ml of 10% W/v aqueous PVP solution.

The bound FITC was separated from the free FITC on a Sephadex G-75 column (26 mm internal diameter, 600 mm high) previously equilibrated with 0.02 M sodium phosphate buffer (pH 6.5). Twenty millilitres of the PVP/FITC solution were fed into the top of the column and developed with the sodium phosphate buffer at a flow rate of 0.35 ml/min. The eluted PVP was positioned by testing successive 8 ml samples by the B.P.C. identification method. PVP and the PVP-FITC complex were recovered in the region of the void volume (samples 9-18) whilst uncombined FITC was recovered in the region of the total fluid volume of the column (samples 39-50). The PVP concentration in each aliquot was estimated by refractive index measurements, which showed that 85% of the added PVP was in samples 9-18.

APPLICATION

A sufficient amount of PVP-FITC complex was added to unlabelled PVP to produce a 5% $^{\text{W}}/_{\text{V}}$ solution (total PVP) of suitable fluorescence. 200 ml of this solution was then used to granulate powder mixes in a fluidised bed under conditions described by Aulton and Banks³. Some of the granules so produced were then

sprinkled sparcely on a glass slide and observed by an incident light fluorescence technique using a Vickers fluorescence microscope (M41 Photoplan). High pressure mercury vapour light is passed through a 475 nm suppression filter and a FITC exciter filter (the peak absorption of FITC conjugates is at 495 nm), then via a FITC dichroic reflector and a fluorite objective to the sample. The emitted fluorescence passes back through the objective and the dichroic, then via a 515 nm barrier filter to the eye piece (peak emission for FITC conjugates is 520 nm). A camera system enabled permanent records to be made.

A further technique was developed for observing binder distribution across a section of an individual granule. Granules were sprinkled into molten paraffin wax and, after solidification, the wax was cut into 20 µm thick sections with a microtome. Such sections clearly showed the distribution of PVP within granules.

REFERENCES

- H. Rinderknecht, Nature, 193, 167 (1962).
- R.C. Nairn (Ed.), "Fluorescent Protein Tracing", 2. E. & S. Livingstone, London, 1969.
- M.E. Aulton and M. Banks, J. Pharm. Pharmac., 29, Suppl., P59 3. (1977).

